
J .  Fluid Mech. (1984), vol. 146, p p .  417-449 

Printed in Great Britain 
417 

Proximity-induced galloping of two interfering 
circular cylinders 

By A. BOKAIANt 
Earl and Wright Ltd, Consulting Engineers, Victoria Station House, 191 Victoria Street, 

London SWlE 5NE 

A N D  F. GEOOLA 
Department of Civil Engineering, University College London, Gower Street, London WClE 6BT 

(Received 16 November 1983 and in revised form 9 May 1984) 

Experiments were conducted to investigate the response of a rigid two-dimensional 
elastically mounted smooth circular cylinder, with oscillations restricted to a plane 
normal to  the incident flow, as influenced by the vicinity of an identical fixed body 
placed inside the wake. The static lift and drag coefficients, as well as the vibration 
amplitude and frequency of the upstream cylinder as functions of relative position 
of the pair of cylinders are given. Most measurements were carried out under two 
conditions of free-stream turbulence. Whilst turbulence decreased the magnitude of 
drag coefficients, it  had no appreciable effect on lift coefficients. The forces on the 
upstream body were found to be influenced by the proximity to the downstream one 
in a significant way only when the streamwise spacing is less than two diameters. 

I n  the dynamic tests, two kinds of instability, namely a vortex-resonance and 
galloping, were observed, with the latter only occurring when the downstream 
cylinder was well submerged in the near wake of the upstream one. The vortex- 
shedding frequency was always found to  lock to oscillation frequency. Whereas the 
vibration characteristics remained essentially unaffected with changing turbulence 
intensity, the galloping amplitudes were observed to be sensitive to cylinders’ 
aspect ratio. A quasi-steady theory was developed to predict the galloping behaviour. 

1. Introduction 
When a single elastic circular cylinder subjected to a uniform flow vibrates in a 

cross-flow direction, the flow field becomes complex because of the interaction of the 
fluid Aow and the body motion. When this cylinder is approached from a downstream 
direction by a similar bluff body which is held fixed and parallel in the near wake 
of the upstream cylinder, the flow field and the dynamic response of the front 
(upstream) body becomes significantly more complex as a result of mutual interaction 
between the two cylinders. This means, amongst other things, that  the critical flow 
speed corresponding to the vibration onset may change, the oscillation amplitude also 
intensifies and may become excessive. In  general, above a critical threshold flow 
velocity, the amplitude of motion grows consistently with increasing flow speed, thus 
resembling the galloping instability of isolated non-circular cylinders. The present 
paper describes an experimental and analytical investigation into the response of a 
rigid two-dimensional elastically mounted smooth circular cylinder, having oscillations 
restricted to a plane normal to the incident flow, with a stationary identical parallel 
cylinder placed inside its wake. 

t Formerly at London Centw for Marine Technology. 
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The work that instigated the present research was first undertaken by Zdravkovich 
(1974) when he was trying to  obtain insight into the flow-induced vibrations of two 
interfering circular cylinders. He carried out some tests in an open-circuit wind tunnel 
on a pair of identical rigid cylinders in tandem arrangement (the line connecting the 
cylinder centres being parallel to the flow direction) over a Reynolds-number range 
from about 1 x lo5 to 2 x lo5 (based on the diameter of a single cylinder), with the 
upstream cylinder flexibly mounted so as to have only a cross-flow vibration while 
the downstream body was being held stationary. He did not collect any quantitative 
information, and observed no large-amplitude oscillations except a t  the gap of 0.5 
cylinder diameters, where serious self-excited vibrations occurred. Small-scale 
laboratory observations in this study have also indicated that, when the two bodies 
are in close proximity of one another with the rear (downstream) cylinder well inside 
the wake of the front one, the upstream cylinder is susceptible to galloping, and, 
depending on flow condition and the mass and structural damping of the cylinder, 
large-amplitude galloping-type oscillations can build up. The cylinder vibrates more 
severely as the downstream cylinder is brought closer to it. However, once the gap 
between the two bodies exceeds a few diameters, the fixed downstream cylinder can 
practically have no effect on the fluid-dynamic excitations of the upstream one ; the 
upstream body then could only suffer from an ordinary vortex resonance. For these 
reasons, the abovementioned type of instability will be referred to as 'proximity 
galloping '. Most recently, Ruscheweyh (1 983) carried out some interesting wind-tunnel 
experiments with a pair of identical smooth circular cylinders a t  a Reynolds number 
of the order o f 9  x lo4. The individual cylinders were mounted in order to have a two 
degrees of freedom oscillation. His research was in relation to wind-excited instability 
of stacks. At the gap of 0.5 diameters, and when the incident flow was a t  an angle 
of 10" with respect to the line connecting the cylinder centres (a slightly staggered 
arrangement), both cylinders exhibited a large-amplitude galloping-type oscillation, 
with the upstream one undergoing a predominantly transverse motion. In  Zdravko- 
vich's observations, only the gross characteristics of the problem were studied, with 
very little attention being given to the flow processes. A better understanding of these 
gross characteristics should result in a more rational and economical design procedure 
for two interfering circular cylinders. 

The principal aim of the present study was to  quantify the fluid-elastic instabilities 
of the upstream cylinder, both in amplitude and frequency domains, in terms of 
governing flow and structural parameters and the relative position with respect to 
the fixed downstream body. The two cylinders were located a t  various distances from 
each other in-line and across-flow. A quasi-steady theory was developed for the 
prediction of the oscillation amplitude and frequency. With both cylinders stationary, 
observations were made as to the way in which the lift and drag coefficients of the 
upstream cylinder changed, as the cylinders' separation was reduced, from that of 
two independent cylinders to  that of an almost single body. The measurements thus 
obtained were used in the theoretical prediction procedure, and the results were 
discussed in terms of the observed dynamic test data. 

2. Mathematical model 
Figure 1 represents a two-dimensional flow of velocity I/ streaming past two 

neighbouring identical parallel circular cylinders of diameter D. The downstream 
body is held fixed while the upstream one is constrained to move only vertically a t  
right angles to the flow direction. In  this figure s and r' represent the longitudinal and 
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FIGURE 1. Vibrating circular cylinder in proximity to a stationary downstream neighbour. 

transverse spacing between the centre of the rear cylinder and that of the front one 
in its mean position. These two quantities are made dimensionless by dividing them 
by the cylinder diameter to give the relative streamwise and lateral separations 
xo = s /D  and yo = r / D  respectively. When the vibrating body moves downwards 
with velocity y, the relative velocity between the oncoming steady flow and the 
oscillating cylinder is given by Fel in the triangle of velocities drawn. This relative 
flow velocity Kel at an angle of attack a = tanp1 (y/ V )  will give rise to a transverse 
component of force Fu. With this, the differential equation of motion about the 
equilibrium position of the elastically suspended cylinder may be expressed as 

my+cy+ky = Fu. (1) 

m is the total vibrating mass (mass of the system in still fluid plus the added mass); 
y is the downward displacement from the equilibrium position; c indicates the usually 
small, linear damping; k denotes a linear spring constant (the stiffness), and an 
overdot represents differentiation with respect to time. 

The fluid-dynamic forces are obtained using a quasi-steady hypothesis, in which 
the lateral force Fu is assumed to be the same as on a fixed body during a static test 
under the same angle of flow attack and the same longitudinal and lateral spacing. 
At any moment during the oscillation, the relative transverse separation of the 
vibrating cylinder from the fixed downstream body is yo + y / D .  The moving cylinder 
experiences a force having two components of drag FDa and lift FLU acting along and 
normal to the relative velocity vector respectively, as shown in figure 1 .  By resolving 
the lift and drag forces in the y-direction, it may be written 

(2) 

where p and L indicate the fluid density and the cylinder length respectively, and 
CD, = F,,a/(+pDLV:el) and C,, = FLa/(ipDLVFel) denote respectively the drag and 
lift coefficients based on the relative velocity Kel and the separations 0, H and OH. 

By introducing the independent variables of natural circular frequency 

my+cy+ky = Fu = - + P D L V : ~ ~  (CDasina+CLacosa), 
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0, = (k /m): ,  the reduced displacement Y = y / D ,  the reduced damping /3 = c/2mwn 
and the mass parameter n = pD2L/2m,  the equation of motion may be written as 

nV V 
Y + z w , p Y + w ;  Y = -+,, D Y+c,,-) D ’  (3) 

The above relationship is valid only when the angle a is small; that  is, when the 
cylinder velocity y a t  the relative separation x, and yo is much smaller than the 
free-stream velocity V .  

I n  figure I FD and FL represent the static drag and lift forces for the relative 
longitudinal and transverse spacing of xo and yo + Y under the free-stream velocity 
V (the zero angle of flow attack). The lift and drag coefficients C, = F,/(+,pDL V 2 )  and 
C, = FL/($pDLVz) are related to the coefficients C,, and C,, by the following 
relationships : 

in which 6x, and 6(yo+ Y )  are defined as 

0, H cos a 
D -xo = 0.5[(y0 + Y )  sin 201 + xo(cos 2a- l)], 6xo = 

OH cos a 
D -(yo+ Y )  = 0.5[(y0+ Y)(cos2a-1)-x0sin2a]. (7) &(YO+ Y) = 

With the assumption of a being small, 6xo and 6(yo+ Y )  are simplified as 

Dx, Y 
, 6(yo+ Y )  = -- (8), (9) 

D(Y,+ Y )  Y 6xo = 
V V .  

Using the relationships (4), ( 5 ) ,  (8) and (9), the differential equation of motion (3) 
is transformed into 

in which U = V / w ,  D is the reduced velocity. I n  the above relationship, the terms 
w; Y + nu; U2CL indicate variations in the oscillation frequency of the cylinder, while 
the ‘damping effect ’ is from the following expression : 

The self-excitation will begin when the above expression becomes negative. 
The static lift and drag forces on the front cylinder are functions of the cylinders’ 

spacing. Since the lift coefficient is antisymmetrical with respect to the wake 
centreline, its variation can, for example, be approximated by a polynomial in xo of 
degree I and in Y +  yo of degree 2K+ 1, where I and K are integers. Thus 

K I  

in which i and j are counters and the A(2i+l , j l  are constant coefficients. These 
coefficients are obtained by fitting a surface to the measured values of C, for a set 
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of separations between the two cylinders. The variation of drag coefficient is 
symmetrical with respect to  the wake centreline, and therefore can similarly be 
expressed by a power series in the form 

M N  

where M and N are integers denoting the degrees of the polynomial in Y + y o  and 
xo respectively, and C(zi,j) are constant coefficients. They are obtained by a procedure 
similar to that described for the lift coefficient. 

As the dynamic test observations in 54.3 will reveal, the galloping instability only 
occurs when the downstream cylinder is situated in the near-wake region of the 
upstream one. The lift- and drag-coefficients data, as will be shown in 54.5, indicate 
that in this region C, can satisfactorily be approximated by a polynomial of degree 
4 in terms of xo and of degree 5 in terms of Y +yo. Hence 

where 

5 

(7, = I: A j  Yj, 
j = O  

B, = 

B,  = 

4 r 4  1 



422 A .  Bokaian and F. Geoola 

In  the region of galloping instability, the drag coefficient can similarly be expressed 
by a polynomial of degrees 3 and 6 in terms of xo and yo+ Y respectively. Thus 

6 

where 

c, = I: cj Yj, 
j -0  

Substitution of C,, aCL/axo, C, and aC,/aY from (18), (16) and (14) in (10) results 
in an equation with constant terms. To free this equation from these terms, the 
following linear transformation is adopted : 

Y = z+p, (20) 

in which z and p represent a new variable and a constant respectively. Upon equating 
the constant terms to zero, the following relationship is found for the computation 
o f p :  

5 

p+nU2 I: A j d  = 0. 
j - 0  

Then the differential equation of motion takes the following nonlinear autonomous 
form : 

z+w;z = -nu, Uf(z, i), (22) 

wheref(z,i) is a lengthy polynomial in terms of z and i, which is not written here 
for the sake of brevity. Since the mass parameter is usually small (n Q l ) ,  an 
approximate periodic solution to (22) can be sought in the form 

(23 ) 

where a is the reduced amplitude defined as vibration amplitude divided by cylinder 
diameter, and $ denotes the phase, both of which are assumed to be slowly varying 
functions of time t .  Applying the first approximation of Krylov & Bogoliubov (1949), 
the following relationship can be written for the reduced amplitude : 

z = a cos (w,t + $), 

da 
- = Ko(a) = - nu~oazf(acos@, -uw,sin+)sin@d@, 
dt 27T 
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in which @ = w,t+$.  A similar expression can be written for the instantaneous 
response frequency w, : 

0: = u;+- s,’” f(acos$, -au,sin$)cos$d@. 
7cU 

The steady-state amplitude corresponds to a = a,, where a, is a constant. The 
amplitudes of steady vibration are therefore determined by putting (24) equal to zero. 
This yields the first steady amplitude a = 0. The algebraic equation of non-zero 
limit-cycle galloping amplitudes is 

r 4  1 

+$(C4-5520A5  +@3 + B4y,)p2 +*(5c5 + 3B4 + 5B5y,)p3 + $ ( v 6  + B5) p4]  a’ 

+ (P, + p 4 p  +iB5p2) a3 + t[C4 - 5X0A5 + B4y0 + (5C5 + B, + 5B5y,) p 

+ 5(3C, + B5)p2] a4 + &B5a5 +&C& = 0. (26) 

The steady-state vibration-frequency ratio 52 = w,/w, can similarly be computed 
from the following relationship : 

r 4  1 

Also of interest is the critical flow speed for the initiation of galloping U,. This is 
obtained by putting a = 0 in (26). Using a phase-plane approach (the plane of a 
against a ) ,  it  may easily be concluded that the amplitude a = a, is stable if 

in which K,(a) is defined by (24 ) .  It is unstable otherwise. The condition for 
self-excitation from the mean position is 

3. Experimental set-up and programme 
The investigation was conducted in a rectangular horizontal flume 0.3 m wide, 

0.3 m high and 18 m long with vertical glass sidewalls. The working section was 
situated at a distance of about 1 m from the leading streamlined plates of the flume. 
The water depth a t  this section was kept constant a t  roughly 290 mm. A miniature 
current flowmeter was used for time-mean velocity measurements. The velocity 
fluctuations were detected by means of a hot-film probe, the output of which was 
fed into a minicomputer. 

The velocity distribution at the test station was sensibly constant over a major 
portion of the section, with the boundary layer being less than 6 mm. The background 
turbulence at this section had an intensity ( 2 ) j / V  = 6.5%, where v denotes the 
streamwise fluctuating velocity, and a scale of 16 mm. Free-stream turbulence of high 
intensity could be generated a t  the working section by the installation of a turbulence 
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FIGURE 2. Schematic diagram of the dynamic test apparatus: A, air bearing; B, air-bearing housing; 
C, air-bearing shaft; D, arm; E, vibrating cylinder; F, cross-bar; G, helical spring; H, receiving 
transducer; I, transmitting transducer; J, rigid frame ; K, damper connecting shaft; L, oil pot; M, 
stationary cylinder. 

grid at the distance of 360 mm upstream of this section. This flow had intensity and 
scale of 11.9 % and 8 mm respectively. 

A schematic representation of the equipment for dynamic testing is given in figure 
2. The vibrating system was suspended from a rigid frame by means of two identical 
helical springs, each with a stiffness of 8.53 N/m. Using air-bearing devices, the 
movement of the oscillating upstream cylinder was restricted to a plane normal to 
the incident flow. The end-clearances between the model and the side walls were 
1 mm. The downstream cylinder was held horizontally in the flume, parallel to the 
rear one. With the aid of a mechanical device, the rear body was able to traverse in 
either the transverse or streamwise directions. There was practically no end gap 
between the downstream model and the sidewalls. An ultrasonic displacement- 
measuring device was used to detect the system movement. External damping could 
be applied to the system artificially by means of a very thin plate immersed in an 
oil pot. The mass of the system could be changed by putting additive masses on the 
cross- bar. 

A circular cylinder, with a similar body submerged in its wake, suffers not only 
from an expected drag force but also a lift force. To measure the static forces on 
a cylinder as influenced by the proximity to a parallel downstream body, the two 
cylinders were held vertically with the upstream cylinder always being held in the 
channel centre plane, as shown in figure 3. The downstream body was strain-gauged 
at the top. The signal from the straingauge was fed into the minicomputer. Further 
details of the experimental set-up and the measuring techniques are given elsewhere 
(Bokaian & Geoola 1984~) .  

The models used comprised two pairs of circular cylinders of 8 and 16 mm diameter. 
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The cylinders were made of PVC and had a smooth surface. The experiments carried 
out with the pair of identical cylinders can be broadly classified into two series of 
static and dynamic tests. In  the static experiments the mean fluid-dynamic forces 
on the upstream cylinder were measured, whereas in the dynamic tests the cross-flow 
instabilities of the front body were investigated. The two test series covered both 
arrangements of tandem and staggered relative to the free-stream flow, with 
longitudinal and transverse separation ranging from 1 to 5 and 0 to 3 diameters 
respectively. The effects of free-stream turbulence on static forces and also on the 
fluid-elastic inst,abilities of the upstream cylinder in the dynamic experiments were 
to be determined. Using the formula given by Kiya et al. (1982), i t  was found that 
the cylinder flow (isolated) was within the subcritical regime in all tests. A single 
cylinder of 16 mm diameter occupied about 5 % of the area of the channel working 
section. However, no correction was made to the results of this work for the blockage 
effects. 

4. Presentation and analysis of results 

A principal characteristic of vortex shedding is the non-dimensional Strouhal 
number 5, = f ,  D/ V ,  where f, is the shedding frequency of the upstream cylinder. 
The variation of S ,  (for two stationary cylinders) is shown in figure 4 as a function 
of spacing ratio xo and yo. These data were taken from the previous work of the 
authors (Bokaian & Geoola 1984h). The most noticeable feature of these data is that, 
in tandem arrangement, for spacings less than two diameters. the tlownstream body 
inhibited the formation of a vortex street on the gap side. 

4.1. VortPx-shedding frequency of the upstream cylinder 
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FIGURE 4. Variation of the Strouhal number of the upstream cylinder (fixed) as afunction of relative 
streamwise and transverse spacing (Bokaian & Geoola 1984b); L = 300 mm, D = 16 mm, 
( ? ) i / V = 6 . 5 % ;  0 , R e = 5 . 6 x 1 0 3 ; ~ , R e = 1 . 1 5 x 1 0 3 .  

4.2. Static lift and drag coefficients 
Information about the static forces on a circular cylinder upstream of an identical 
parallel neighbour is rather scarce. Wardlaw & Cooper (1973) seem to be the only 
researchers who carried out some limited force measurements. A detailed survey of 
lift and drag forces was made at five longitudinal stations with separations of 1.09, 
1.25, 1.5, 1.75 and 2 diameters. At each streamwise station the forces were explored 
for roughly 22 transverse locations in one side of the flume centreplane (positive 
lateral spacing). In  order to establish the degree of symmetry of drag data and 
antisymmetry oflift data with respect to the wake centreline, some force measurements 
were made in the other side of the flume centreplane (negative lateral spacing). A t  
each location the force measurement was repeated a t  least twice and the average value 
was taken. The lift and drag forces were converted to their respective lift and drag 
coefficients using the expressions 

C, = (lift force)/(+pDL.P) and C, = (drag force)/(ipDLV2). 
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FIGURE 5. Variation of the drag coefficient as a function of longitudinal and lateral spacing 
ratio: 0 ,  Re = 5900, (G)i/ V = 6.5 % ; A, 2600, 6.5 yo ; 0, 5900, 11.9 yo. 

The static forces were measured a t  two Reynolds numbers of 5900 and 2600. I n  the 
tests associated with the higher Reynolds number, the measurements were conducted 
under the two conditions of free-stream turbulence. At the above Reynolds numbers, 
the drag coefficient C,, of a single cylinder showed the respective values of 1.25 and 
1.26 in a water flow with 6.5 % turbulence intensity, and 1.17 and 1.19 in a flow with 
turbulence level of 11.9 yo. 

Figure 5 shows the experimental data of drag coefficient as a function of lateral 
position of the downstream cylinder in the wake of the upstream one. I n  order that 
the data be distinguishable from one another, a smooth curve was drawn through 
the data points associated with the higher Reynolds number Re = 5900 under 6.5 yo 
turbulence level (note that these curves were not drawn by polynomial fitting). The 
above figure clearly indicates that the drag force data are symmetrical with respect 
to the wake centreline. I n  general, the data tend to  be of the same form, a typical 
example of which over half of the wake is indicated in figure 6. I n  this figure the drag 
coefficient denotes a minimum value C,, when the two cylinders are in tandem 
arrangement ; the minimum drag value always being less than the single-cylinder 
value. 

Figure 6 reveals that, in general, on increasing the transverse separation, the drag 
coefficient increases continuously from the point of minimum on the wake centreline 
and attains the free-stream value a t  a relatively small lateral spacing. From this, it  
may be inferred that in the near wake the drag forces were lower than the 
single-cylinder values. With further increases in transverse separation, the steady 
increase in the magnitude of the drag coefficient continues until a peak is reached. 
This peak probably corresponds to a position fairly close to the edge of the wake. 
Beyond this point the drag force slowly decreases, approaching the free-stream value 
a t  a very large lateral spacing. 

Figure 5 shows that the drag-force data are still very much in evidence when the 
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FIGURE 6. General representation of the variation of lift and drag coefficients 
as a function of lateral position in the wake. 

XO 

FIGURE 7. Variation of drag coefficient in tandem arrangement aganst the longitudinal spacing ratio. 
Presentstudy: .,Re = 5900, (?)i/V = 6.5~0;~,2600,6.5~0; 0,5900,11.9%.TanidaetaZ. (1973): 
_ _ -  , 3400, 0.1 %. Kostic & Oka (1972): -.-.-.- , 13000, 2.8%. 

two cylinders are placed a t  2 diameters streamwise separation. Moreover i t  indicates 
that  the drag coefficient changes only slightly with a limited change in Reynolds 
number from 2600 to 5900. I n  contrast, the effect of turbulence on the lateral 
variation of drag force can be seen to  be profound and becomes quite noticeable at 
a sufficiently small transverse spacing; this probably being due to free-stream drag 
variation. As the above figure clearly denotes, an increase in turbulence intensity from 
6.5 % to 11.9 % do not destroy the profiles, but i t  generally tends to lower the value 
of drag coefficient and smoothens the drag data. 

The measured data of minimum drag coefficient CDo versus xo are indicated in figure 
7. Also plotted in this figure are the data obtained by previous workers having 
Reynolds numbers near to those of the present study. They comprise the observations 
of Tanida, Okajima & Watanabe (1973) obtained by towing two cylinders in a water 
tank a t  a Reynolds number Re = 3400, and those of Kostic & Oka (1972) calculated 
from the circumferential pressure distribution in a uniform turbulent flow of a wind 
tunnel with an intensity of 2.8% a t  R e  = 13000. 
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Despite the fact that in tandem arrangement the vortex-shedding process behind 
the upstream body takes place for spacings greater than two diameters, the drag data 
of this study indicate no discontinuity in relation to the cylinders’ separation. Figure 
7 shows that there exist considerable differences between the data points of various 
workers. Similar differences exist between the results of other investigators which are 
not plotted in the above figure. Whilst the experimental techniques used to obtain 
the drag force (strain gauge, pressure distribution etc.) and the errors involved could 
in part be responsible for so much difference between the results of various workers, 
it  may generally be concluded that the Reynolds number, turbulence characteristics 
and the cylinders’ aspect ratio, collectively or individually, are governing factors in 
the variation of drag coefficient versus the spacing. 

The measured values of the lift coefficient C,  as a function of relative spacing xo 
and yo are similarly represented in figure 8. In  drawing this figure the positive direc- 
tion of the lift force was assumed to be towards the downstream cylinder’s streamwise 
axis. A smooth curve was again drawn through the data points with 6.5 yo turbulence 
intensity a t  higher Reynolds number Re = 5900. This figure clearly demonstrates that  
the lift forces were approximately zero when the two cylinders were aligned 
longitudinally. The lift-coefficient data all look antisymmetrical with respect to the 
wake centreline. A typical lateral variation of the lift force over half of the wake is 
shown in figure 6. It is clear from figure 8 that the lift force field is essentially 
unaffected by a limited increase in Reynolds number or turbulence intensity. 
However, it must be mentioned that Wardlaw & Cooper (1973) observed some 
variation in the value of static coefficients with changing Reynolds number. 

As the lift data indicate, for a fixed and small longitudinal separation, as the 
downstream cylinder is moved from the free stream to the wake centreline, the lift 
force on the front body increases until i t  reaches a peak at a relatively small lateral 
spacing. Figure 9 shows the sketch of the flow patterns a t  this peak, obtained by 
injecting potassium permanganate into the wake. It is clear from this figure that the 
downstream cylinder significantly alters the near-wake structure of the upstream one, 
and in doing so squeezes the streamlines between the two bodies. The two rows of 
vortices from the adjacent sides interlock, resulting in a complex flow pattern behind 
the cylinder pair. It is not surprising that a comparison of the lateral variation of 
the lift force on the front body at  small separations (figure 8) and the corresponding 
one on the rear cylinder, as reported by Bokaian & Geoola (1983c), clearly shows that 
both peak a t  exactly the same transverse position. 

The measured maximum lift coefficient CLmax and the corresponding relative 
lateral spacing ymax versus the longitudinal separation ratio xo are plotted in figure 
10. Lift coefficients as large as nearly 0.8 can be seen. This figure clearly shows that, 
at two diameters’ spacing, the lift force on the front cylinder becomes almost 
negligible. Furthermore it indicates that  the interaction effects and the resulting lift 
force on the upstream body sharply increases as the downstream cylinder goes inside 
the wake of the upstream one. 

4.3. Dynamic-test results 
The assembly for dynamic testing was adjusted so that the cylinder position in still 
water was halfway between the flume bed and the water surface. A series of 35 
dynamic experiments was undertaken, the important details of which can be found 
in table 1 .  Columns ( l ) ,  (2) and (3) represent the run number and the corresponding 
relative separations xo and yo respectively. The natural circular frequency of the 
system in still water w,, and hence the total vibrating mass m, and also the viscous 
damping coefficient c ,  were obtained by plucking excitation in still water. The initiai 
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1.25 

displacement to the system relative to the equilibrium position Y,  was about 50 mm. 
Columns (4), (5 ) ,  (6), (7) and (8) give the values of the on, the vibratory Reynolds 
number y = w, D2/v,  the added-mass coefficient C,, the reduced damping 
,8 = c/2mwn and the mass parameter n = pD2L/2m of the experiments respectively. 
C, was calculated by dividing the measured still water added mass by apaLD2. I n  
each dynamic test, the values of the natural circular frequency w,, the reduced 
damping p and the mass parameter n of the vibrating system were fixed. Measurements 
of the free-stream velocity V in the flume, together with a simultaneous recording 
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FIGURE 9. Sketch of flow patterns at the maximum lift force. 
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FIGURE 10. Variation of the maximum lift coefficient and the corres onding lateral spacing ratio 
as functions of relative longitudinal separation: 0,  Re = 5900, ( a , f / V  = 6.5 yo; 0,  Re = 2600, 
(G)i/ V = 6.5 yo. 

of the oscillation amplitude and frequency, were made. Column (11) shows the 
approximate Reynolds-number range of the tests. 

Indicated in column (9) of table 1 are the values of the vortex-resonance speed 
U, = 1/2nS,, where S, is the Strouhal number of the vortex-shedding behind the 
upstream body (see figure 4). The bar in this column denotes the lack of vortex- 
shedding at the corresponding spacing. Column (10) shows the values of stability 
parameter k, = 2@/n. 

Figures 11-16 summarize the dynamic test data in a dimensionless form with the 
reduced amplitude a and the oscillation-frequency ratio D = oJw,  plotted against 
the reduced flow velocity U = V / ( w , D ) .  The small vertical arrows on the U-axis 
indicate the vortex-resonance speed U,. The reduced velocity was varied between 



L
on

gi
tu

di
na

l-
 

sp
ac

in
g 

ra
ti

o
 

5
0

 

1.
09

 
1.

25
 

1.
25

 
1.

25
 

1.
25

 
1.

25
 

1.
50

 
1.

75
 

2.
00

 
3.

00
 

4.
00

 
5.

00
 

I .
09

 
1.

25
 

1.
50

 
1.

75
 

2.
00

 
3.

00
 

4.
00

 
5.

00
 

(2
) 

L
at

er
al

- 
sp

ac
in

g 
ra

ti
o 

Yo
 

(3
) 

0.
00

 
0.

00
 

0.
00

 
0.

00
 

0.
00

 
0.

00
 

0.
00

 
0.

00
 

0.
00

 
0.

00
 

0.
00

 
0.

00
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

V
ib

ra
to

ry
 

R
ey

no
ld

s 
N

at
u

ra
l 

nu
m

be
r 

A
dd

ed
- 

ci
rc

ul
ar

 
w

, 
DO

2 
m

as
s 

fr
eq

ue
nc

y 
Y 

=
 7
 co

ef
fi

ci
en

t 
o
n
 (r

ad
/s

) 
(v

 =
 

m
z/

s)
 

C, 
(4

) 
(5

) 
(6

) 
4.

16
 

10
65

 
1.

68
 

4.
16

 
10

65
 

1.
68

 
4.

10
 

10
50

 
1.

68
 

4.
52

 
28

9 
2.

13
 

4.
10

 
10

50
 

1.
69

 
4.

10
 

10
50

 
1.

68
 

4.
16

 
10

65
 

1.
67

 
4.

16
 

10
65

 
1.

67
 

4.
16

 
10

65
 

1.
67

 
4.

16
 

10
65

 
1.

70
 

4.
16

 
10

65
 

1.
70

 
4.

16
 

10
65

 
1.

70
 

4.
16

 
10

65
 

1.
67

 
4.

16
 

10
65

 
1.

67
 

4.
16

 
10

65
 

1.
68

 
4.

16
 

10
65

 
1.

68
 

4.
16

 
10

65
 

1.
68

 
4.

16
 

10
65

 
1.

69
 

4.
16

 
10

65
 

1.
69

 
4.

16
 

10
65

 
1.

70
 

R
ey

no
ld

s-
 

M
as

s 
V

or
te

x-
 

nu
m

be
r 

R
ed

uc
ed

 
D

ar
am

et
er

 
re

so
na

nc
e 

S
ta

bi
li

tv
 

ra
ng

e 
Y

 

pD
2L

 
sp

ee
d 

pa
ra

m
et

er
 

V
D

 
2

,q
 

R
e=

- 
k 

=
-
 

1
 

2m
w

, 
(p

 =
 l

o
3

 k
g/

m
3)

 
Z

nS
, 

n 
(u

 =
 

m
2

/s
) 

(7
) 

(8
) 

n=
- 

da
m

pi
ng

 

2m
 

u,
=

- 
C

 
p=

- 0.
01

13
 

0.
01

13
 

0.
04

10
 

0.
04

19
 

0.
08

91
 

0.
12

57
 

0.
01

13
 

0.
01

 1
3

 
0.

01
13

 
0.

01
 1

3
 

0.
01

13
 

0.
01

13
 

0.
01

 1
7 

0.
01

17
 

0.
01

17
 

0.
01

17
 

0.
01

17
 

0.
01

17
 

0.
01

 1
7 

0.
01

 1
7 

0.
07

74
 

0.
07

74
 

0.
07

51
 

0.
03

75
 

0.
07

51
 

0.
07

51
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

72
 

0.
07

72
 

0.
07

72
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

74
 

0.
07

72
 

(9
) 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

1.
49

 
1.

02
 

0.
95

 
0.

83
 

1.
23

 
1.

21
 

1.
19

 
1.

13
 

1.
08

 
1
 .OO

 
0.

87
 

0.
82

 

(1
0)

 
0.

91
7 

0.
91

7 
3.

43
0 

7.
02

0 
7.

45
4 

10
.5

17
 

0.
91

7 
0.

91
7 

0.
91

7 
0.

92
0 

0.
92

0 
0.

92
0 

0.
95

0 
0.

95
0 

0.
95

0 
0.

95
0 

0.
95

0 
0.

95
0 

0.
95

0 
0.

95
2 

(1
1)

 
14

00
-5

95
0 

16
00

-5
85

0 
1 
15

0-
59

50
 

?
 

bY 
65

0-
2 

10
0 

??
 

28
00

-5
75

0 
3.

 
36

50
-5

65
0 

3 
80

0-
59

50
 

& 
80

0-
21

00
 

.%
 9 

80
0-

1 
60

0 
0

 

0
 

R 
1 1

50
-5

95
0 

80
0-

2 
10

0 

80
0-

 1
60

0 
11

00
-6

00
0 

13
00

-6
00

0 
80

0-
21

00
 

75
0-

21
00

 
75

0-
19

50
 

75
0-

19
50

 
70

0-
1 

80
0 

70
0-

1 
70

0 

0
, R 



Q
1 
t 

1.
09
 

1 .
OO
 

4.
16
 

10
65
 

1.
67
 

0.
01
18
 

0.
07
74
 

1.
13
 

0.
95
8 

95
0-
17
00
 

Q
3 t
 

3.
00
 

1 .
00
 

4.
16
 

65
0-
17
00
 

Q4
t 

4.
00
 

1 .
OO
 

4.
16
 

10
65
 

1.
68
 

0.
01
 18
 

0.
07
74
 

0.
80
 

0.
95
8 

Q
5
 t 

5.
00
 

1 .
OO
 

4.
16
 

10
65
 

1.
67
 

0.
01
18
 

0.
07
74
 

R1
 t 

1.
09
 

2.
00
 

4.
16
 

10
65
 

1.
69
 

0.
01
 14
 

0.
07
74
 

0.
80
 

0.
92
5 

65
0-
13
50
 

R
2
 t 

2.
00
 

2.
00
 

4.
16
 

10
65
 

1.
69
 

0.
01
 14
 

0
 07
74
 

0
 80
 

0
 9
25
 

65
0-
1 6
00
 

R
3 t
 

3.
00
 

2.
00
 

4.
16
 

10
65
 

1.
69
 

0.
01
 14
 

0.
07
74
 

0.
80
 

0.
92
5 

65
0-
19
50
 

Q
2

t 
2.
00
 

1 .
OO
 

4.
16
 

10
65
 

1.
68
 

0.
01
18
 

0
 07
74
 

1.
05
 

0.
95
8 

80
0-
17
00
 

10
65
 

1.
68
 

0.
01
 18
 

0.
07
74
 

0.
95
 

0.
95
8 

80
0-
 1
70
0 

2 
0.
82
 

0.
95
8 

65
0-
1 7
00
 

2: F
 g 

R
4
 t 

4.
00
 

2.
00
 

4.
16
 

10
65
 

1.
70
 

0.
01
14
 

0.
07
72
 

0.
80
 

0.
92
8 

65
0-
1 9
50
 

E 
R

ri
t 

5.
00
 

2.
00
 

4.
16
 

10
65
 

1.
70
 

0.
01
14
 

0.
07
72
 

0.
79
 

0.
92
8 

65
0-
19
50
 

&
 

65
0-
1 6
00
 

E
 

10
65
 

1.
70
 

0.
01
 14
 

0.
07
72
 

0.
83
 

0.
92
8 

8
W
 

1 8
00
 

$.
 

H E
p
 

si
t 

1.
09
 

3.
00
 

4.
16
 

10
65
 

1.
70
 

0.
01
 14
 

0.
07
72
 

0.
86
 

0.
92
8 

s2
 t 

2.
00
 

3.
00
 

4.
16
 

10
65
 

1.
70
 

0.
01
 14
 

0.
07
72
 

0.
83
 

0
 92
8 

65
0-

1 
80
0 

S
3

t 
3.
00
 

3.
00
 

4.
16
 

S4
t 

4.
00
 

3.
00
 

4.
16
 

10
65
 

1.
68

 
0.
01
14
 

0.
07
74
 

0.
81
 

0.
92
5 

80
0-
1 
75
0 

S
5

t 
5.
00
 

3.
00
 

4.
16
 

10
65
 

1.
68
 

0.
01
14
 

0.
07
74
 

0.
81
 

0.
92
5 

80
CL
-1
75
0 

F
 

.i3
, B %
 

cq
 

t 
C

yl
in

de
r 

m
ad

e 
of

 P
V

C
; 

cy
li

nd
er

 d
ia

m
et

er
 D

 =
 1
6 

m
m

; 
cy

li
nd

er
 l

en
gt

h 
L

 =
 2
98
 m

m
; 

cy
li

nd
er

 a
sp

ec
t 

ra
ti

o 
L

ID
 =

 1
8.

63
; i

ni
ti

al
-d

is
pl

ac
em

en
t 

1 
C

yl
in

de
r 

m
ad

e 
of

 d
u

ra
l;

 c
yl

in
de

r 
di

am
et

er
 D

 =
 8

 m
m

; 
cy

li
nd

er
 l

en
gt

h 
L

 =
 2
98
 m

m
; 

cy
li

nd
er

 a
sp

ec
t 

ra
ti

o 
L

ID
 =

 3
7.
25
; in

it
ia

l-
di

sp
la

ce
m

en
t 

11 
W

ak
e 

ob
se

rv
at

io
ns

 b
eh

in
d 

th
e 

vi
br

at
in

g 
cy

li
nd

er
. 

ra
ti

o 
71 

=
 Y

,/
D

 =
 3
.1
3.
 

0
 g 

ra
ti

o 
7 

=
 Y

,/
D

 =
 6
.2
5.
 

m
 

3
 

cn
 

T
A

B
L

E
 1.
 S

ig
ni

fi
ca

nt
 d

et
ai

ls
 o

f 
th

e 
dy

na
m

ic
 e

xp
er

im
en

ts
 



434 A .  Bokaian and F.  Geoola 

r 
t 

n 

Q 

L 
0.6 L 

Y o  = o  

1.5 1 / xo 

0.5 1 

0 
0 

Run 
= 1.25 ( T ~ Q )  

1.09 (T1) 

1.5 (T3) 

1.75 (T4) 

1 
6 

FIGURE 11 (a) .  For caption see facing page 

approximately 0 and 6, usually by changing V and holding the values of w, and D 
constant. In some runs, the mean position of the upstream cylinder, either when the 
body was oscillating or stationary, varied with changing free-stream flow speed. The 
data associated with the variation of the dimensionless mean position p versus the 
reduced velocity are also plotted in the above figures. No appreciable change in the 
results can be seen with changing the turbulence intensity from 6.5 yo to 11.9 %. 

In the dynamic results two kinds of instability, namely a vortex-resonance and 
galloping, can be seen. Indicated in the lower part of figure 17 is the type of instability 
that was observed at each separation. ‘a ’ refers to a vortex lock-in, while ‘ b ’ denotes 
a galloping instability. As can be deduced from this figure, the type of excitation 
observed depends entirely on the cylinders’ spacing. The essential element for the 
occurrence of galloping instability is the location of the downstream body in a critical 
region of the wake of the upstream one. Motions will then commence above some 
threshold flow speed. The galloping vibrations only occur when the rear cylinder is 
well inside the near wake of the front one. 

The tests plotted in figures 11-15 all have approximately the same value of stability 
parameter, between 0.917 and 0.958. The experimental data of tandem arrangement 
are shown in the first figure. The runs T1, T2a, T3 and T4, drawn in figure 11 (a ) ,  
which have small separations of 1.09, 1.25, 1.5 and 1.75 diameters respectively, all 
indicate a galloping instability. The most noticeable feature of the data with small 
spacings is that, on increasing the flow velocity, the wake-induced forces cause a slow 
and steady rise of the vibration frequency ; the oscillation becoming generally faster. 
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0.6 

435 

- 

I 

0 (T6) 

Y o = O  

U 
( b )  

FIGURE 11. Variation of the reduced amplitude and the oscillation-frequency ratio against the 
reduced velocity in tandem arrangement. (a )  A, B, run T1; m, d, T2a; 0, 6, T3; V, v, T4 
(the first symbol represents the 6.5 yo turbulence intensity, while the second one denotes the 11.9 Yo 
turbulence level). ( b )  0 ,  T5; a, T6; 0, T7; V, T8. ( ( 2 ) i ? / V  = 6.5%). 

For the smallest gap between the two bodies (xo = 1.09), the vibration began at a 
reduced velocity of about Uo = 1.3. The oscillation amplitude denotes a progressive 
but slow increase with increasing flow velocity. It seems that the vibration amplitudes 
reach a limit value a t  a reduced velocity considerably higher than 6. The oscillation- 
frequency data a t  xo = 1.09 show similarly a continual increase with an increase in 
flow velocity. The vibration frequency had a value of w, x 0.650, a t  the instability 
onset, and attained a value of w, x 0 . 9 5 ~ ~  at  the reduced velocity of U x 4.5. It 
remained at  this value thereafter. 

With an increase in the separation to 1.25 diameters, the value of the critical 
reduced velocity for galloping dropped to Uo x 1. The oscillation amplitudes and 
frequencies a t  this position, particularly in the reduced-velocity range U <, 4, were 
considerably larger than the corresponding ones at  xo = 1.09. It is interesting to 
remember that the magnitude of the static lift forces a t  the position xo = 1.25 were 
also larger than those at xo = 1.09 (see figure 8). However, a t  1.25 diameters spacing, 
the vibration amplitudes appear to reach a limit value at  a reduced velocity of 
about 6. The oscillation-frequency data do not show any significant variation in 
relation to flow velocity; the value of w ,  being slightly less than w,. 
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-0.4 r 
" = ' Run Q l  

p -o+ x 0 = 1 . 0 9  

I I 1 

1 2 3 4 5 6 
0, 

FIGURE 13. Variation of the reduced amplitude, the oscillation frecruencv ratio, and the cvlinder . "  
mean position against the reduced velocoiy in staggered arrangement. A, run Q1; 0 ,  Q2; A, Q3; 
0, Q4; 'I, Q5. (Gp/V = 6.5%. 

FIGURE 12. Variation of the reduced amplitude and the oscillation frequency ratio against the 
reduced velocity in staggered arrangement. (a)  A, &, run P1; ., fl, P2 (the first symbol represents 
the 6.5% turbulence intensity, while the second one denotes the 11.9% turbulence level). (6) 0,  
P3; V, P4; 0,  P5; A, P6; n, P7; 'I, P8. (G)i/V = 6.5%. 
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a i  0.2 c x , = 5  

0 4  

0 13 
0 12 

0.4 t 

0 1 1  I I I I 

1 2 3 4 5 6 
U 

(b ) 
FIGURE 14. Variation of the reduced amplitude, the oscillation-frequency ratio, and the cylinder 
mean position aggnst the reduced velocity in staggered arrangement. A, run R1; 0 ,  R2; A, R3; 
0, R4; V, R5. ( v 2 ) ? / V =  6.5%. 

Further increases in the separation from 1.25 to 1.5 and 1.75 diameters caused the 
value of Uo to decrease from 1 to 0.9 and 0.75 respectively. The reduced-amplitude 
profiles at positions xo = 1.25, 1.5 and 1.75 are similar to one another, but are very 
different from that at x,, = 1.09. A t  these stations, the vibration amplitude rapidly 
increases with increasing flow speed until a certain amplitude is reached. Beyond this, 
the rate of increase declines considerably, with the oscillation amplitude quickly 
approaching a constant value. The variation of the vibration-frequency ratio versus 
the reduced velocity at separations xo = 1.5 and 1.75 has the same pattern, and 
indicates a slow increase with an increase in the flow speed, even when the oscillation 
amplitude remains at  a constant value. 

From the above observations, it may be deduced that in tandem arrangement, on 
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0.2 1 

t 
0 L - L  (S2) 
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FIGURE 15. Variation of the reduced amplitude and the oscillation frequency ratio against the 
reducedvelocity'instaggeredarrangement.A,runSl; . ,S2;A,S3; O,S4;V,S5. (a)i/V = 6.5%. 

increasing the gap between the pair of cylinders, the galloping instability begins at 
a smaller flow velocity, the vibration amplitude attains a limit value at a smaller flow 
speed, the limit oscillation amplitude generally decreases, and the vibration becomes 
generally faster. All these are only true if the gap always remains sufficiently small. 
From what has been described so far, it is evident that the behaviour of proximity- 
induced galloping, both in amplitude and frequency domains, is essentially different 
from that of galloping of isolated non-circular cylinders, in which the oscillation 
frequency remains a t  a constant value, and, a t  sufficiently high values of reduced 
velocity, the vibration amplitude varies almost linearly in relation to flow speed 
(Blevins 1977). 

As can be seen in figure 11 ( b ) ,  the data points a t  stations with spacings 2 , 3 , 4  and 
5 diameters, corresponding to tests T5, T6, T7 and T8 respectively, all indicate a 
vortex-excited resonance. The reduced-amplitude profiles are similar amongst them- 
selves. As this figure clearly shows, the reduced velocity range of lock-in, the peak 
resonance amplitude, the corresponding reduced velocity, and the vortex-resonance 
speed all decrease on increasing the gap. At each station, some difference can be seen 
between the reduced velocity a t  the maximum lock-in amplitude and the corres- 
ponding vortex-resonance speed. It is interesting to note that a t  two diameters 
position the peak resonance amplitude is roughly equal to the limit galloping 
amplitude a t  xo = 1.75 (run T4), but is about half of that a t  xo = 1.25 (run T2a). 
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x o  = 1.25 

Y o  = o  

U 
FIQURE 16. Variation of the reduced amplitude and the oscillation frequency ratio against the 
reduced velocity in tandem arrangement at different stability parameter levels. 0,  #, run T2a; 
0,  d, T2b; V, V, T2c; a, 0,  T2d; A, A, T2e (the first symbol represents the 6.5% turbulence 
intensity, while the second one denotes the 11.9 % turbulence level). 

Furthermore, a t  xo = 2, the vibration began with a frequency slightly higher than 
the natural frequency of the system, and indicated a slow increase when the flow 
speed was increased. The oscillation frequency data at positions xo = 3, 4 and 5 
collapse onto one another and lie somewhat below those of xo = 2. They clearly 
denote that the cylinder oscillated with frequencies differing only marginally from 
their still-water values. 

The dynamic test observations of staggered arrangement with transverse separation 
of 0.5 cylinder diameters are shown in figure 12. I n  these experiments, the cylinder 
mean position indicated no appreciable variation in relation to  flow velocity. The 
galloping vibration data are plotted in figure 12 (a).  The reduced-amplitude profiles 
at spacings xo = 1.09 (test P1) and q, = 1.25 (test P2) are rather similar to the 
corresponding ones in tandem arrangement (runs Tl and T2a respectively). The limit 
oscillation amplitude at xo = 1.25 in both staggered and tandem arrangements 
appears to be about the same. However, in the staggered arrangement, an increase 
in the streamwise gap from 1.09 to 1.25 diameters caused a small increase in the 
reduced velocity Uo for galloping onset. It may be surprising that at position xo = 1.25 
the value of Uo indicates a good agreement with the corresponding vortex-resonance 
speed U,, while a t  xo = 1.09 the value of U, differs but little from the corresponding 
value of U,. The vibration-frequency data a t  both separations fall onto one another. 
The instability began with a frequency slightly less than the system’s natural 
frequency, but for reduced velocities greater than 1.8 they locked to  one another. This 
behaviour is different from those observed in tandem arrangement. Figure 17 denotes 
that no galloping vibration occurred for spacings greater than xo = 1.25 and yo = 0.5. 
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FIGURE 17. Variation of the reduced amplitude against the reduced 
velocity at various cylinders separations. 

A number of important conclusions may be drawn from the dynamic-test data 
examined so far. First, the galloping amplitudes and frequencies remain essentially 
unaffected by a limited increase in free-stream turbulence intensity. Secondly, for flow 
velocities greater than a critical value, galloping oscillations build up from an 
equilibrium position (cylinder position in still water). These two characteristics of 
proximity-induced galloping are in contrast with those of isolated sharp-edged bodies, 
in which, depending on the cross-sectional geometry, turbulence can have profound 
effects on the cylinder behaviour, and some initial displacement (triggering ampli- 
tude) may be required to excite the cylinder to gallop (Blevins 1977). Thirdly, the 
extent of the galloping instability depends on the cylinders’ relative position. An in- 
crease in the flow velocity does not extend the area of instability further down- 
stream. Galloping instability only occurs when the rear cylinder is well inside the near 
wake of the front one. 

The measured results of tests P3, P4, P5, P6, P7 and P8, which have separations 
of 1.5, 1.75,2,3,4 and 5 diameters respectively, all show a vortex-induced oscillation. 
As figure 1 2 ( b )  clearly indicates, the vibration began with a frequency slightly less 
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than the natural frequency w, of the system. The oscillation frequency wc showed 
a steady but very slow increase with increasing flow speed. At the end of the 
vortex-resonance excitation, the value of w, was only slightly higher than that of w,. 
When the streamwise gap was increased, the reduced velocity range of lock-in, the 
shape and the value of peak resonance amplitude remained roughly the same. 
However, the reduced velocity at the maximum lock-in amplitude, and the vortex- 
resonance speed generally decreased with increasing the longitudinal gap. This 
behaviour is similar to that observed in tandem arrangement (see figure 11 b ) .  

The dynamic-test data of staggered arrangement with transverse spacings of 1, 2 
and 3 diameters are similarly plotted in figures 13, 14 and 15 respectively. Only a 
vortex-excited resonance can be seen in these figures. At a given lateral separation, 
the reduced velocity range of vortex lock-in, and the peak resonance amplitude 
generally increase with increasing the streamwise gap. However, whilst a t  the 
transverse spacing ratio of yo = 1 (see figure 13a), the reduced velocity a t  peak 
resonance amplitude generally decreases when xo is increased (similar to the trend 
observed a t  yo = 0 and 0.5 in figures l i b ,  12b),  there exists an opposite behaviour 
a t  yo = 2 and 3 in figures 14(a) and 15. An interesting point is that  for the smallest 
streamwise gap (xo = 1.09) and a t  lateral separation of one diameter (run Q l ) ,  a t  high 
flow velocities outside the vortex-resonance range where the cylinder was almost 
stationary, the cylinder mean position varied almost linearly with flow speed. With 
an increase in the lateral separation to two diameters (test R1 with xo = 1.09 and 
yo = 2), a similar behaviour was observed, but with the difference that the direction 
of cylinder displacement was opposite to  that of run Q1. No such phenomena occurred 
a t  yo = 3. In  staggered arrangement, again a t  each station, some difference can be 
seen between the reduced velocity a t  peak lock-in amplitude and the corresponding 
vortex-resonance speed. From a comparison of all the vibration frequency data, it 
may be deduced that in staggered arrangement the variation of the oscillation- 
frequency ratio Q with reduced velocity U is essentially independent of the cylinders’ 
spacing. 

The effects of changing the cylinders’ aspect ratio on the behaviour of proximity- 
induced galloping can be examined by comparing the experimental observations of 
runs T2c and T2d, as shown in figure 16. The two tests have significantly different 
aspect ratios but possess the same separation, and were designed to have roughly the 
same value of stability parameter. This figure quite clearly indicates that an increase 
in the aspect ratio from L I D  = 18.63 to  37.25 caused some differences in the 
oscillation amplitudes, though the vibration frequencies remained essentially un- 
changed. From this it may be inferred that galloping amplitudes are sensitive to the 
cylinders’ aspect ratio. This characteristic of proximity-induced galloping is similar 
to that of galloping of a single sharp-edged body. 

Changing the structural damping can have significant effects on the cross-flow 
instabilities of isolated bluff bodies (Wawzonek & Parkinson 1979 ; Bokaian & Geoola 
1 9 8 4 ~ ) .  The effects of changing the structural damping on the behaviour of 
proximity-excited galloping is examined by comparing the results of tests T2a, T2b, 
T2d and T2e, as shown in figure 16. I n  these experiments the cylinder pair was in 
tandem arrangement and had a gap of 0.25 diameters. This spacing was deliberately 
chosen since the oscillation amplitudes were the greatest (see figure l l a ) .  The above 
runs display a number of interesting features. First, as is to be expected, on increasing 
the structural damping, the vibration amplitudes generally decrease and a higher flow 
velocity is needed to excite the cylinder to gallop. Secondly, in general, the oscillation 
frequency locked to the system natural frequency in spite of considerable changes 
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in flow speed and structural damping. Thirdly, although the abovementioned tests 
have significantly different values of stability parameter k,, nevertheless the variation 
of the reduced amplitude versus reduced velocity a t  all four levels of k, is similar. 
This characteristic of proximity-induced galloping is in sharp contrast to that  of 
galloping instability of isolated non-circular cylinders. 

4.4. Wake jluctuations behind the vibratiw cylinder 
As described in $4.1, for a pair of stationary identical cylinders in tandem 
arrangement, up to two diameters spacing, the downstream body inhibited the vortex 
formation behind the upstream one. However, visualization of flow patterns by in- 
jecting potassium permanganate into the front cylinder’s wake indicated that, when 
this body is allowed to vibrate, a vortex-shedding process always takes place behind 
it. I n  test T2b the wake fluctuations were measured behind the galloping cylinder 
at various flow speeds. The gap between the cylinder pair was 0.25 diameters. The 
hot-film probe was positioned in the centreplane of the flume, just outside the near 
wake of the vibrating body. Figure 18 represents typical examples of the power 
spectra of the fluctuating velocity in the wake, with E and f denoting the normalized 
spectral-density function and the shedding frequency respectively. Indicated on the 
right-hand side of each figure is the corresponding reduced flow velocity. All the 
spectra have a single clear and sharp peak a t  a predominant frequency. This is an 
evidence that the wake velocity was fluctuating in a fairly sinusoidal manner, and 
hence the presence of a strong vortex-shedding process. 

Figure 19 summarizes the variation of the dimensionless vortex-shedding frequency 
15 F L M  145 
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ws/wn, where w, is the circular vortex-shedding frequency as estimated from the peak 
in the power spectrum, against the reduced velocity. This figure clearly denotes that 
the values of the data points w,/w, do not deviate appreciably from 1. It should be 
remembered that in run T2b the vibration frequency was approximately equal to the 
system's natural frequency (see figure 16). Observations of wake patterns indicated 
that the cylinder shed regularly a pair of strong vortices during one oscillation cycle, 
irrespective of a change in the free-stream velocity. These findings conclusively 
demonstrate that during galloping motion the vortex-shedding frequency locked to 
the vibration frequency. This behaviour of proximity-excited galloping is puzzling, 
because it is similar to that of a vortex resonance rather than galloping instability of 
isolated cylinders. During galloping vibration of a bluff body, the shedding frequency 
varies linearly in relation to flow speed, (Bokaian & Geoola 1 9 8 4 ~ ) .  

4.5. Prediction of galloping amplitude and frequency 

As can be seen in figure 17,  within the range of spacings, Reynolds numbers and other 
governing parameters tested, the galloping instability occurs when the separation 
ratio xo and yo falls within a trapezoid with vertices at (xo = 1.09, yo = 0), (x, = 1.09, 
yo = 0.5), (x,, = 1.75, yo = 0) and (xo = 1.25, yo = 0.5). Considering that during 
large-amplitude galloping motion the cylinder can go outside this boundary, a larger 
area in the form of a rectangle with vertices a t  (zo = 1.09, yo = 0), (xo = 1.09, 
yo = 1.5), (zo = 2.0, yo = 0) and (xo = 2.0, yo = 1.5) was defined for the purpose of 
surface fitting. This boundary covers the entire area that may be occupied by the 
galloping cylinder. To approximate the variation of lift and drag coefficients in terms 
of the cylinders' spacing, the method of least squares was employed, orthogonal 
polynomials being used (Hayes 1970). 

Using the measured drag data in 6.5 yo turbulence intensity (figure 5) and the lift 
data (figure 8),  it was found that the variation of lift and drag coefficients could 
satisfactorily be approximated by (14) and (18) respectively. The constant coefficients 
of the surfaces are given in tables 2 and 3. 

An attempt was made to compare the measured galloping data with the corres- 
ponding computed ones as predicted by the quasi-steady approach. This was done by 
replotting the results of the dynamic tests T1 and T2a of figure 11, and T26, T2d and 
T2e of figure 16 in a similar manner in figure 20. Superimposed on these graphs are 
the corresponding theoretical galloping curves. They are based on the relationships 
(26) and (27), the data of table 1 and the coefficients given in tables 2 and 3. The 
full lines represent the stable limit-cycle galloping oscillations, while the broken lines 
denote the unstable ones, as verified by (28). In  runs T2a, T2b,  T2d and T2e,  the 
coexistence of stable and unstable vibrations for a given reduced velocity is an 
indication that (26) has two real positive roots. I n  tests T2a and T2b (figures 206, c ) ,  
the stable and unstable solutions have different amplitudes but possess equal 
frequencies. 
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A(l,o) -201.06530 4 3 - 0 )  295.982 85 4 5 . 0 )  - 87.890 65 

802.85098 A ( 5 , 2 )  -240.31059 

'(1,4) -36.22640 4 3 , 4 )  55.398 71 4 5 , 4 )  - 16.73430 

4 L 1 )  544.68433 A(3, 1) - 807.38568 4 5 . 1 )  240.64642 

4 , 3 )  229.74973 A(3,3) -347.38023 4 5 , 3 )  104.45051 

TABLE 2. Coefficients of polynomial approximation of the variation of lift coefficient 

A(l,z) -536.661 74 4 3 , 2 )  

- 0.643 85 %, 0) - 3.179 87 ( 4 4 . 0 )  5.66581 

8.01931 
3.54489 C(2, 1) 7.02447 C(4,1) - 12.01435 

0.505 1 1  C(2,3) 1 .OM39 C(4,3) - 1.754 1 1 
- 2.33990 C(2,  2) -4.661 94 C(4,Z) 

C(6,0)  -1.72233 

C(6, z) -2.41967 
%, 1) 3.626 99 

'('3% 3) 0.52848 

TABLE 3. Coefficients of polynomial approximation of the variation of drag coefficient 
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As can be seen in figure 20, in the amplitude domain both the predicted and the 
measured responses show a trend of increase as the flow speed is increased; the 
vibration amplitudes approaching limit values asymptotically. A comparison of the 
results of tests T2a, T2b, T2d and T2e reveals that, as the structural damping is 
increased, the predicted value of the reduced velocity for galloping onset increases, 
and the computed vibration amplitudes generally decrease. These two trends are 
consistent with those of the measured data. Notice that, in tests other than T1, the 
theory predicts that some triggering amplitude is required in order to excite the 
cylinder to gallop. This behaviour is contrary to that of observed results. It seems 
that the computer predictions are sensitive to the polynomial approximation of the 
static forces. If more thorough static-force data had been available, this kind of error 
might have been lessened, and better predictions would have been achieved. 

It is difficult to explain the reason behind the differences between the measured 
values and the computed ones in the abovementioned tests. It is possible that the 
cylinder added mass in the streaming flow deviated from the corresponding still-fluid 
value. However, even if there was any such deviation, i t  would probably be small 
enough to explain the large differences in frequency domain. Another possible reason 
is that the quasi-steady theory takes into account only the galloping forces, and not 
the forces induced by the vortex-shedding process. It is possible that in proximity- 
excited galloping the forces due to the shed vortices play a significant role. If the 
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fluctuating lift and drag forces on the upstream member of a stationary cylinder pair 
were known, one would have an idea of the order of magnitude of these forces as 
compared with galloping forces. 

5. Summary and conclusions 
The flow around a stationary or vibrating smooth circular cylinder, as influenced 

by the proximity to a fixed identical downstream body, displayed a number of 
interesting characteristics. I n  the static experiments, the variation of lift and drag 
coefficients was found to be antisymmetrical and symmetrical with respect to the 
wake centreline respectively; the minimum drag force being on this line. I n  the near 
wake the lift forces attained peak values while the drag forces remained lower than 
single-cylinder values. An increase in turbulence intensity lowered the drag-coefficient 
value, and smoothed the drag data, but had no appreciable effect on the lift data. 
The forces on the front cylinder differed from those on an isolated body only if the 
two cylinders were as close as three diameters. It was generally concluded that the 
free-stream Reynolds number, turbulence characteristics and cylinders’ aspect ratio, 
collectively or individually, are significant factors in the static tests. 

The dynamic experiments, carried out over the reduced-velocity range of 0-6, 
indicated either a vortex lock-in or a galloping instability. The latter always builds 
up from an equilibrium position, and only occurs when the rear body is well inside 
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the near wake of the front one. An increase in the flow velocity had no appreciable 
effect on the extent of the galloping excitation downstream. The vortex-shedding 
frequency was always found to lock to vibration frequency. It was observed that the 
galloping amplitudes were sensitive to the cylinders’ aspect ratio. An increase in the 
structural damping only caused the oscillation amplitudes to decrease, and the 
galloping instability to  begin a t  a higher flow velocity. Whilst some characteristics 
of proximity-induced galloping were found to be similar to those of galloping of 
sharp-edged bodies, others were fundamentally different. A quasi-steady theory was 
developed to predict the galloping behaviour. 

This work was undertaken a t  London Centre for Marine Technology, University 
College London. The authors are grateful to Professor J. M. T. Thompson for his 
support and encouragement. F. Geoola is indebted to Mr M. J. Kenn of the Hydraulics 
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this project in that laboratory. 
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